Show simple item record

dc.contributor.authorOber, Thomas Joseph
dc.contributor.authorHaward, Simon J.
dc.contributor.authorPipe, Christopher J.
dc.contributor.authorSoulages, Johannes
dc.contributor.authorMcKinley, Gareth H.
dc.date.accessioned2015-07-06T15:45:25Z
dc.date.available2015-07-06T15:45:25Z
dc.date.issued2013-05
dc.date.submitted2013-03
dc.identifier.issn0035-4511
dc.identifier.issn1435-1528
dc.identifier.urihttp://hdl.handle.net/1721.1/97680
dc.description.abstractMicrofluidic devices are ideally suited for the study of complex fluids undergoing large deformation rates in the absence of inertial complications. In particular, a microfluidic contraction geometry can be utilized to characterize the material response of complex fluids in an extensionally-dominated flow, but the mixed nature of the flow kinematics makes quantitative measurements of material functions such as the true extensional viscosity challenging. In this paper, we introduce the ‘extensional viscometer-rheometer-on-a-chip’ (EVROC), which is a hyperbolically-shaped contraction-expansion geometry fabricated using microfluidic technology for characterizing the importance of viscoelastic effects in an extensionally-dominated flow at large extension rates (λ[. over ε][subscript a] ≫ 1, where λ is the characteristic relaxation time, or for many industrial processes . over ε][subscript a] ≫ 1 s[superscript −1]). We combine measurements of the flow kinematics, the mechanical pressure drop across the contraction and spatially-resolved flow-induced birefringence to study a number of model rheological fluids, as well as several representative liquid consumer products, in order to assess the utility of EVROC as an extensional viscosity indexer.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Microgravity Fluid Sciences Grant NNX09AV99G)en_US
dc.description.sponsorshipEuropean Commission. Marie Curie Actions (FP7-PEOPLE-2011-IIF Grant 298220)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00397-013-0701-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleMicrofluidic extensional rheometry using a hyperbolic contraction geometryen_US
dc.typeArticleen_US
dc.identifier.citationOber, Thomas J., Simon J. Haward, Christopher J. Pipe, Johannes Soulages, and Gareth H. McKinley. “Microfluidic Extensional Rheometry Using a Hyperbolic Contraction Geometry.” Rheologica Acta 52, no. 6 (May 18, 2013): 529–546.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Hatsopoulos Microfluids Laboratoryen_US
dc.contributor.mitauthorOber, Thomas Josephen_US
dc.contributor.mitauthorHaward, Simon J.en_US
dc.contributor.mitauthorPipe, Christopher J.en_US
dc.contributor.mitauthorSoulages, Johannesen_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.relation.journalRheologica Actaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsOber, Thomas J.; Haward, Simon J.; Pipe, Christopher J.; Soulages, Johannes; McKinley, Gareth H.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record