Show simple item record

dc.contributor.authorLim, Eugene J.
dc.contributor.authorOber, Thomas Joseph
dc.contributor.authorEdd, Jon F.
dc.contributor.authorDesai, Salil P.
dc.contributor.authorNeal, Douglas
dc.contributor.authorBong, Ki Wan
dc.contributor.authorDoyle, Patrick S.
dc.contributor.authorMcKinley, Gareth H.
dc.contributor.authorToner, Mehmet
dc.date.accessioned2015-07-06T18:13:23Z
dc.date.available2015-07-06T18:13:23Z
dc.date.issued2014-06
dc.date.submitted2013-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/97685
dc.description.abstractControlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms5120en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleInertio-elastic focusing of bioparticles in microchannels at high throughputen_US
dc.typeArticleen_US
dc.identifier.citationLim, Eugene J., Thomas J. Ober, Jon F. Edd, Salil P. Desai, Douglas Neal, Ki Wan Bong, Patrick S. Doyle, Gareth H. McKinley, and Mehmet Toner. “Inertio-Elastic Focusing of Bioparticles in Microchannels at High Throughput.” Nature Communications 5 (June 18, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLim, Eugene J.en_US
dc.contributor.mitauthorOber, Thomas Josephen_US
dc.contributor.mitauthorDoyle, Patrick S.en_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLim, Eugene J.; Ober, Thomas J.; Edd, Jon F.; Desai, Salil P.; Neal, Douglas; Bong, Ki Wan; Doyle, Patrick S.; McKinley, Gareth H.; Toner, Mehmeten_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dc.identifier.orcidhttps://orcid.org/0000-0001-6070-7356
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record