MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Port reduction in parametrized component static condensation: approximation and a posteriori error estimation

Author(s)
Eftang, Jens L.; Patera, Anthony T.
Thumbnail
DownloadPatera_Port reduction.pdf (1.289Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We introduce a port (interface) approximation and a posteriori error bound framework for a general component-based static condensation method in the context of parameter-dependent linear elliptic partial differential equations. The key ingredients are as follows: (i) efficient empirical port approximation spaces—the dimensions of these spaces may be chosen small to reduce the computational cost associated with formation and solution of the static condensation system; and (ii) a computationally tractable a posteriori error bound realized through a non-conforming approximation and associated conditioner—the error in the global system approximation, or in a scalar output quantity, may be bounded relatively sharply with respect to the underlying finite element discretization. Our approximation and a posteriori error bound framework is of particular computational relevance for the static condensation reduced basis element (SCRBE) method. We provide several numerical examples within the SCRBE context, which serve to demonstrate the convergence rate of our port approximation procedure as well as the efficacy of our port reduction error bounds.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/97696
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
International Journal for Numerical Methods in Engineering
Publisher
Wiley Blackwell
Citation
Eftang, Jens L., and Anthony T. Patera. “Port Reduction in Parametrized Component Static Condensation: Approximation and a Posteriori Error Estimation.” Int. J. Numer. Meth. Engng (July 2013): n/a–n/a.
Version: Original manuscript
ISSN
00295981
1097-0207

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.