MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A space-time variational approach to hydrodynamic stability theory

Author(s)
Yano, Masayuki; Patera, Anthony T.
Thumbnail
DownloadPatera_A space-time.pdf (1.924Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present a hydrodynamic stability theory for incompressible viscous fluid flows based on a space–time variational formulation and associated generalized singular value decomposition of the (linearized) Navier–Stokes equations. We first introduce a linear framework applicable to a wide variety of stationary- or time-dependent base flows: we consider arbitrary disturbances in both the initial condition and the dynamics measured in a ‘data’ space–time norm; the theory provides a rigorous, sharp (realizable) and efficiently computed bound for the velocity perturbation measured in a ‘solution’ space–time norm. We next present a generalization of the linear framework in which the disturbances and perturbation are now measured in respective selected space–time semi-norms; the semi-norm theory permits rigorous and sharp quantification of, for example, the growth of initial disturbances or functional outputs. We then develop a (Brezzi–Rappaz–Raviart) nonlinear theory which provides, for disturbances which satisfy a certain (rather stringent) amplitude condition, rigorous finite-amplitude bounds for the velocity and output perturbations. Finally, we demonstrate the application of our linear and nonlinear hydrodynamic stability theory to unsteady moderate Reynolds number flow in an eddy-promoter channel.
Date issued
2013-05
URI
http://hdl.handle.net/1721.1/97699
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Publisher
Royal Society
Citation
Yano, M., and A. T. Patera. “A Space-Time Variational Approach to Hydrodynamic Stability Theory.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, no. 2155 (April 24, 2013): 20130036–20130036.
Version: Original manuscript
ISSN
1364-5021
1471-2946

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.