MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strontium influence on the oxygen electrocatalysis of La[subscript 2−x]Sr[subscript x]NiO[subscript 4±δ] (0.0 ≤ x[subscript Sr] ≤ 1.0) thin films

Author(s)
Lee, Dongkyu; Lee, Yueh-Lin; Grimaud, Alexis; Biegalski, Michael D.; Morgan, Dane; Shao-Horn, Yang; Hong, Wesley Terrence; ... Show more Show less
Thumbnail
DownloadShao-Horn_Strontium influence.pdf (6.603Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Substitution of lanthanum by strontium (Sr) in the A-site of cobalt-containing perovskites can greatly promote oxygen surface exchange kinetics at elevated temperatures. Little is known about the effect of A-site substitution on the oxygen electrocatalysis of Ruddlesden–Popper (RP) oxides. In this study, we report, for the first time, the growth and oxygen surface exchange kinetics of La[subscript 2−x]Sr[subscript x]NiO[subscript 4±δ] (LSNO, 0.0 ≤ x[subscript Sr] ≤ 1.0) thin films grown on (001)[subscript cubic]-Y[subscript 2]O[subscript 3]-stabilized ZrO[subscript 2] (YSZ) by pulsed laser deposition. High-resolution X-ray diffraction analysis revealed that the LSNO film orientation was changed gradually from the (100)[subscript tetra.] (in-plane) to the (001)[subscript tetra.] (out-of-plane) orientation in the RP structure with increasing Sr from La[subscript 2]NiO[subscript 4+δ] (x[subscript Sr] = 0) to LaSrNiO[subscript 4±δ] (x[subscript Sr] = 1.0). Such a change in the LSNO film orientation was accompanied by reduction in the oxygen surface exchange kinetics by two orders of magnitude as shown from electrochemical impedance spectroscopy results. Density functional theory (DFT) calculations showed that Sr substitution could stabilize the (001)[subscript tetra.] surface relative to the (100)[subscript tetra.] surface and both Sr substitution and increasing (001)[subscript tetra.] surface could greatly weaken adsorption of molecular oxygen in the La–La bridge sites in the RP structure, which can reduce oxygen surface exchange kinetics.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/97719
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Electrochemical Energy Laboratory; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Journal of Materials Chemistry A
Publisher
Royal Society of Chemistry
Citation
Lee, Dongkyu, Yueh-Lin Lee, Alexis Grimaud, Wesley T. Hong, Michael D. Biegalski, Dane Morgan, and Yang Shao-Horn. “Strontium Influence on the Oxygen Electrocatalysis of La[subscript 2−x]Sr[subscript x]NiO[subscript 4±δ] (0.0 ≤ x[subscript Sr] ≤ 1.0) Thin Films.” J. Mater. Chem. A 2, no. 18 (2014): 6480.
Version: Original manuscript
ISSN
2050-7488
2050-7496

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.