Show simple item record

dc.contributor.authorTriantafyllou, Michael S.
dc.contributor.authorWeymouth, G. D.
dc.contributor.authorSubramaniam, V.
dc.date.accessioned2015-07-13T18:20:52Z
dc.date.available2015-07-13T18:20:52Z
dc.date.issued2015-02
dc.date.submitted2014-10
dc.identifier.issn1748-3190
dc.identifier.issn1748-3182
dc.identifier.urihttp://hdl.handle.net/1721.1/97728
dc.description.abstractWe design and test an octopus-inspired flexible hull robot that demonstrates outstanding fast-starting performance. The robot is hyper-inflated with water, and then rapidly deflates to expel the fluid so as to power the escape maneuver. Using this robot we verify for the first time in laboratory testing that rapid size-change can substantially reduce separation in bluff bodies traveling several body lengths, and recover fluid energy which can be employed to improve the propulsive performance. The robot is found to experience speeds over ten body lengths per second, exceeding that of a similarly propelled optimally streamlined rigid rocket. The peak net thrust force on the robot is more than 2.6 times that on an optimal rigid body performing the same maneuver, experimentally demonstrating large energy recovery and enabling acceleration greater than 14 body lengths per second squared. Finally, over 53% of the available energy is converted into payload kinetic energy, a performance that exceeds the estimated energy conversion efficiency of fast-starting fish. The Reynolds number based on final speed and robot length is Re ≈ 700 000. We use the experimental data to establish a fundamental deflation scaling parameter σ* which characterizes the mechanisms of flow control via shape change. Based on this scaling parameter, we find that the fast-starting performance improves with increasing size.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelingen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Sea Grant College Programen_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1748-3190/10/1/016016en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUltra-fast escape maneuver of an octopus-inspired roboten_US
dc.typeArticleen_US
dc.identifier.citationWeymouth, G D, V Subramaniam, and M S Triantafyllou. “Ultra-Fast Escape Maneuver of an Octopus-Inspired Robot.” Bioinspiration & Biomimetics 10, no. 1 (February 1, 2015): 016016.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Ocean Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTriantafyllou, Michael S.en_US
dc.relation.journalBioinspiration & Biomimeticsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWeymouth, G D; Subramaniam, V; Triantafyllou, M Sen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4960-7060
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record