MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii

Author(s)
Saito, Mak A.; Bertrand, Erin M.; Dutkiewicz, Stephanie; Bulygin, Vladimir V.; Moran, Dawn M.; Monteiro, Fanny Meline; Follows, Michael J.; Valois, Frederica W.; Waterbury, John B.; ... Show more Show less
Thumbnail
DownloadFollows_Iron conservation.pdf (2.364Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The marine nitrogen fixing microorganisms (diazotrophs) are a major source of nitrogen to open ocean ecosystems and are predicted to be limited by iron in most marine environments. Here we use global and targeted proteomic analyses on a key unicellular marine diazotroph Crocosphaera watsonii to reveal large scale diel changes in its proteome, including substantial variations in concentrations of iron metalloproteins involved in nitrogen fixation and photosynthesis, as well as nocturnal flavodoxin production. The daily synthesis and degradation of enzymes in coordination with their utilization results in a lowered cellular metalloenzyme inventory that requires ~40% less iron than if these enzymes were maintained throughout the diel cycle. This strategy is energetically expensive, but appears to serve as an important adaptation for confronting the iron scarcity of the open oceans. A global numerical model of ocean circulation, biogeochemistry and ecosystems suggests that Crocosphaera’s ability to reduce its iron-metalloenzyme inventory provides two advantages: It allows Crocosphaera to inhabit regions lower in iron and allows the same iron supply to support higher Crocosphaera biomass and nitrogen fixation than if they did not have this reduced iron requirement.
Date issued
2011-01
URI
http://hdl.handle.net/1721.1/97883
Department
Massachusetts Institute of Technology. Center for Global Change Science; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Saito, M. A., E. M. Bertrand, S. Dutkiewicz, V. V. Bulygin, D. M. Moran, F. M. Monteiro, M. J. Follows, F. W. Valois, and J. B. Waterbury. “Iron Conservation by Reduction of Metalloenzyme Inventories in the Marine Diazotroph Crocosphaera Watsonii.” Proceedings of the National Academy of Sciences 108, no. 6 (January 19, 2011): 2184–2189.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.