MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distribution of diverse nitrogen fixers in the global ocean

Author(s)
Monteiro, Fanny Meline; Follows, Michael J.; Dutkiewicz, Stephanie
Thumbnail
DownloadFollows_Distribution of.pdf (1.823Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We employ a global three-dimensional model to simulate diverse phytoplanktonic diazotrophs (nitrogen fixers) in the oceans. In the model, the structure of the marine phytoplankton community self-assembles from a large number of potentially viable physiologies. Amongst them, analogs of Trichodesmium, unicellular diazotrophs and diatom-diazotroph associations (DDA) are successful and abundant. The simulated biogeography and nitrogen fixation rates of the modeled diazotrophs compare favorably with a compilation of published observations, which includes both traditional and molecular measurements of abundance and activity of marine diazotrophs. In the model, the diazotroph analogs occupy warm subtropical and tropical waters, with higher concentrations and nitrogen fixation rates in the tropical Atlantic Ocean and the Arabian Sea/Northern Indian Ocean, and lower values in the tropical and subtropical South Pacific Ocean. The three main diazotroph types typically co-exist in the model, although Trichodesmium analogs dominate the diazotroph population in much of the North and tropical Atlantic Ocean and the Arabian Sea, while unicellular-diazotroph analogs dominate in the South Atlantic, Pacific and Indian oceans. This pattern reflects the relative degree of nutrient limitation by iron or phosphorus. The model suggests in addition that unicellular diazotrophs could add as much new nitrogen to the global ocean as Trichodesmium.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/97889
Department
Massachusetts Institute of Technology. Center for Global Change Science; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Global Biogeochemical Cycles
Publisher
American Geophysical Union (AGU)
Citation
Monteiro, F. M., M. J. Follows, and S. Dutkiewicz. “Distribution of Diverse Nitrogen Fixers in the Global Ocean.” Global Biogeochemical Cycles 24, no. 3 (September 2010): n/a–n/a. © 2010 American Geophysical Union
Version: Final published version
ISSN
08866236

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.