MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scaling laws describe memories of host–pathogen riposte in the HIV population

Author(s)
Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.
Thumbnail
DownloadBarton-2015-Scaling laws describ.pdf (2.635Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The enormous genetic diversity and mutability of HIV has prevented effective control of this virus by natural immune responses or vaccination. Evolution of the circulating HIV population has thus occurred in response to diverse, ultimately ineffective, immune selection pressures that randomly change from host to host. We show that the interplay between the diversity of human immune responses and the ways that HIV mutates to evade them results in distinct sets of sequences defined by similar collectively coupled mutations. Scaling laws that relate these sets of sequences resemble those observed in linguistics and other branches of inquiry, and dynamics reminiscent of neural networks are observed. Like neural networks that store memories of past stimulation, the circulating HIV population stores memories of host–pathogen combat won by the virus. We describe an exactly solvable model that captures the main qualitative features of the sets of sequences and a simple mechanistic model for the origin of the observed scaling laws. Our results define collective mutational pathways used by HIV to evade human immune responses, which could guide vaccine design.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/98023
Department
Institute for Medical Engineering and Science; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Physics; Ragon Institute of MGH, MIT and Harvard
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Barton, John P., Mehran Kardar, and Arup K. Chakraborty. “Scaling Laws Describe Memories of Host–pathogen Riposte in the HIV Population.” Proc Natl Acad Sci USA 112, no. 7 (February 2, 2015): 1965–1970.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.