Show simple item record

dc.contributor.authorChao, Hui Xiao
dc.contributor.authorArtemova, Tatiana
dc.contributor.authorGore, Jeff
dc.contributor.authorYurtsev, Eugene
dc.contributor.authorDatta, Manoshi Sen
dc.date.accessioned2015-08-11T14:31:07Z
dc.date.available2015-08-11T14:31:07Z
dc.date.issued2013-08
dc.date.submitted2013-10
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/98066
dc.description.abstractInactivation of β‐lactam antibiotics by resistant bacteria is a ‘cooperative’ behavior that may allow sensitive bacteria to survive antibiotic treatment. However, the factors that determine the fraction of resistant cells in the bacterial population remain unclear, indicating a fundamental gap in our understanding of how antibiotic resistance evolves. Here, we experimentally track the spread of a plasmid that encodes a β‐lactamase enzyme through the bacterial population. We find that independent of the initial fraction of resistant cells, the population settles to an equilibrium fraction proportional to the antibiotic concentration divided by the cell density. A simple model explains this behavior, successfully predicting a data collapse over two orders of magnitude in antibiotic concentration. This model also successfully predicts that adding a commonly used β‐lactamase inhibitor will lead to the spread of resistance, highlighting the need to incorporate social dynamics into the study of antibiotic resistance.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 0645960)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Undergraduate Research Opportunities Programen_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/msb.2013.39en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleBacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmidsen_US
dc.typeArticleen_US
dc.identifier.citationYurtsev, Eugene A, Hui Xiao Chao, Manoshi S Datta, Tatiana Artemova, and Jeff Gore. “Bacterial Cheating Drives the Population Dynamics of Cooperative Antibiotic Resistance Plasmids.” Molecular Systems Biology 9 (August 6, 2013). © 2013 EMBO and Macmillan Publishers Limiten_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorYurtsev, Eugeneen_US
dc.contributor.mitauthorChao, Hui Xiaoen_US
dc.contributor.mitauthorDatta, Manoshi Senen_US
dc.contributor.mitauthorArtemova, Tatianaen_US
dc.contributor.mitauthorGore, Jeffen_US
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYurtsev, Eugene A; Chao, Hui Xiao; Datta, Manoshi S; Artemova, Tatiana; Gore, Jeffen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6843-9843
dc.identifier.orcidhttps://orcid.org/0000-0002-4083-7433
dc.identifier.orcidhttps://orcid.org/0000-0003-4583-8555
dc.identifier.orcidhttps://orcid.org/0000-0001-5532-2822
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record