Show simple item record

dc.contributor.authorLopez-Hilfiker, F. D.
dc.contributor.authorMohr, C.
dc.contributor.authorEhn, M.
dc.contributor.authorRubach, F.
dc.contributor.authorKleist, E.
dc.contributor.authorWildt, J.
dc.contributor.authorMentel, Th. F.
dc.contributor.authorWorsnop, D. R.
dc.contributor.authorThornton, J. A.
dc.contributor.authorCarrasquillo, Anthony
dc.contributor.authorDaumit, Kelly E.
dc.contributor.authorHunter, James F.
dc.contributor.authorKroll, Jesse
dc.date.accessioned2015-08-19T17:25:26Z
dc.date.available2015-08-19T17:25:26Z
dc.date.issued2015-07
dc.date.submitted2015-05
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/98103
dc.description.abstractWe measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Atmospheric System Research Grant DE-SC0006867)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Small Business Innovation Research DE-SC0004577)en_US
dc.language.isoen_US
dc.publisherCopernicus GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-15-7765-2015en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceCopernicus Publicationsen_US
dc.titlePhase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compoundsen_US
dc.typeArticleen_US
dc.identifier.citationLopez-Hilfiker, F. D., C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, et al. “Phase Partitioning and Volatility of Secondary Organic Aerosol Components Formed from α-Pinene Ozonolysis and OH Oxidation: The Importance of Accretion Products and Other Low Volatility Compounds.” Atmos. Chem. Phys. 15, no. 14 (2015): 7765–7776.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorCarrasquillo, Anthonyen_US
dc.contributor.mitauthorDaumit, Kelly E.en_US
dc.contributor.mitauthorHunter, James F.en_US
dc.contributor.mitauthorKroll, Jesseen_US
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8097-9199
dc.identifier.orcidhttps://orcid.org/0000-0002-6275-521X
dc.identifier.orcidhttps://orcid.org/0000-0002-9259-1869
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record