MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Designing Durable Vapor-Deposited Surfaces for Reduced Hydrate Adhesion

Author(s)
Sojoudi, Hossein; Walsh, Matthew R.; Gleason, Karen K.; McKinley, Gareth H.
Thumbnail
DownloadMcKinley_Designing Durable.pdf (1.749Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Metadata
Show full item record
Abstract
The formation and accumulation of clathrate hydrates inside oil and gas pipelines cause severe problems in deep-sea oil/gas operations. In the present work, durable and mechanically robust bilayer poly-divinyl benzene/poly(perfluorodecylacrylate) coatings are developed using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of hydrates to underlying substrates (silicon and steel). Tetrahydrofuran (THF) dissolved in water with a wt% concentration of 0–70 is used to study the formation of hydrates and their adhesion strength. Goniometric measurements of the THF–water droplets on the substrates exhibit a reduction in advancing and receding contact angles with an increase in the THF concentration. The strength of hydrate adhesion experiences a tenfold reduction when substrates are coated with these iCVD polymers: from 1050 ± 250 kPa on bare silicon to 128 ± 100 kPa on coated silicon and from 1130 ± 185 kPa on bare steel to 153 ± 86 kPa on coated steel. The impact of subcooling temperature and time on the adhesion strength of hydrate on substrates is also studied. The results of this work suggest that the THF–water mixture repellency of a given substrate can be utilized to assess its hydrate-phobic behavior; hence, it opens a pathway for studying hydrate-phobicity.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/98113
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Advanced Materials Interfaces
Publisher
Wiley Blackwell
Citation
Sojoudi, Hossein, Matthew R. Walsh, Karen K. Gleason, and Gareth H. McKinley. “Designing Durable Vapor-Deposited Surfaces for Reduced Hydrate Adhesion.” Advanced Materials Interfaces 2, no. 6 (March 3, 2015): n/a–n/a.
Version: Author's final manuscript
ISSN
2196-7350
21967350

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.