Show simple item record

dc.contributor.authorNewman, Michael C.
dc.contributor.authorOman, Charles M.
dc.contributor.authorMerfeld, Daniel M.
dc.contributor.authorYoung, Laurence Retman
dc.contributor.authorClark, Torin K.
dc.date.accessioned2015-08-21T14:57:50Z
dc.date.available2015-08-21T14:57:50Z
dc.date.issued2015-05
dc.date.submitted2015-01
dc.identifier.issn1662-5137
dc.identifier.urihttp://hdl.handle.net/1721.1/98183
dc.description.abstractAltered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (National Space Biomedical Research Institute NCC9-58)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fnsys.2015.00068en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleModeling human perception of orientation in altered gravityen_US
dc.typeArticleen_US
dc.identifier.citationClark, Torin K., Michael C. Newman, Charles M. Oman, Daniel M. Merfeld, and Laurence R. Young. “Modeling Human Perception of Orientation in Altered Gravity.” Frontiers in Systems Neuroscience 9 (May 5, 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology.en_US
dc.contributor.mitauthorClark, Torin Kristoferen_US
dc.contributor.mitauthorOman, Charles M.en_US
dc.contributor.mitauthorYoung, Laurence Retmanen_US
dc.relation.journalFrontiers in Systems Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsClark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5732-4389
dc.identifier.orcidhttps://orcid.org/0000-0002-9345-9712
dc.identifier.orcidhttps://orcid.org/0000-0002-5576-3510
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record