MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A density spike on astrophysical scales from an N-field waterfall transition

Author(s)
Halpern, Illan F.; Joss, Matthew Albert Henry; Sfakianakis, Evangelos I.; Hertzberg, Mark Peter
Thumbnail
DownloadHalpern-2015-A density spike on a.pdf (605.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO(N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N>3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1/N and the field's correlation function Δ(x). We show that for large N, the two-point function is 〈δt(x)δt(0)〉 ∝ Δ[superscript 2](|x|)/N and the three-point function is 〈δt(x)δt(y)δt(0)〉 ∝ Δ(|x−y|)Δ(|x|)Δ(|y|)/N[superscript 2]. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/98205
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Physics
Journal
Physics Letters B
Publisher
Elsevier
Citation
Halpern, Illan F., Mark P. Hertzberg, Matthew A. Joss, and Evangelos I. Sfakianakis. “A Density Spike on Astrophysical Scales from an N-Field Waterfall Transition.” Physics Letters B 748 (September 2015): 132–143.
Version: Final published version
ISSN
03702693

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.