Show simple item record

dc.contributor.authorWang, Yinan
dc.date.accessioned2015-08-25T21:16:57Z
dc.date.available2015-08-25T21:16:57Z
dc.date.issued2015-07
dc.date.submitted2015-04
dc.identifier.issn1029-8479
dc.identifier.issn1126-6708
dc.identifier.urihttp://hdl.handle.net/1721.1/98233
dc.description.abstractWe develop the generalized Cartan Calculus for the groups G = SL(2,R) × R[superscript +],SL(5,R) and SO(5, 5). They are the underlying algebraic structures of d = 9, 7, 6 exceptional field theory, respectively. These algebraic identities are needed for the “tensor hierarchy” structure in exceptional field theory. The validity of Poincaré lemmas in this new differential geometry is also discussed. Finally we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Grant Contract DE-SC00012567)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/JHEP07(2015)114en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer-Verlagen_US
dc.titleGeneralized Cartan Calculus in general dimensionen_US
dc.typeArticleen_US
dc.identifier.citationWang, Yi-Nan. “Generalized Cartan Calculus in General Dimension.” J. High Energ. Phys. 2015, no. 7 (July 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorWang, Yinanen_US
dc.relation.journalJournal of High Energy Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, Yi-Nanen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7418-1519
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record