| dc.contributor.author | Lin, Ying-Hsuan |  | 
| dc.contributor.author | Shao, Shu-Heng |  | 
| dc.contributor.author | Wang, Yifan |  | 
| dc.contributor.author | Yin, Xi |  | 
| dc.date.accessioned | 2015-08-26T13:12:33Z |  | 
| dc.date.available | 2015-08-26T13:12:33Z |  | 
| dc.date.issued | 2015-05 |  | 
| dc.date.submitted | 2015-03 |  | 
| dc.identifier.issn | 1029-8479 |  | 
| dc.identifier.issn | 1126-6708 |  | 
| dc.identifier.uri | http://hdl.handle.net/1721.1/98245 |  | 
| dc.description.abstract | We analyze solutions to loop-truncated Schwinger-Dyson equations in massless N = 2 and N = 4 Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent “soft collinear” approximation. We conjecture that at least in the N = 4 matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1/N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics. | en_US | 
| dc.description.sponsorship | Harvard University (Fundamental Laws Initiative Fund) | en_US | 
| dc.description.sponsorship | National Science Foundation (U.S.) (Award PHY-0847457) | en_US | 
| dc.language.iso | en_US |  | 
| dc.publisher | Springer-Verlag | en_US | 
| dc.relation.isversionof | http://dx.doi.org/10.1007/jhep05(2015)136 | en_US | 
| dc.rights | Creative Commons Attribution | en_US | 
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US | 
| dc.source | Springer-Verlag | en_US | 
| dc.title | A low temperature expansion for matrix quantum mechanics | en_US | 
| dc.type | Article | en_US | 
| dc.identifier.citation | Lin, Ying-Hsuan, Shu-Heng Shao, Yifan Wang, and Xi Yin. “A Low Temperature Expansion for Matrix Quantum Mechanics.” J. High Energ. Phys. 2015, no. 5 (May 2015). | en_US | 
| dc.contributor.department | Massachusetts Institute of Technology. Center for Theoretical Physics | en_US | 
| dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US | 
| dc.contributor.mitauthor | Shao, Shu-Heng | en_US | 
| dc.contributor.mitauthor | Wang, Yifan | en_US | 
| dc.relation.journal | Journal of High Energy Physics | en_US | 
| dc.eprint.version | Final published version | en_US | 
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US | 
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US | 
| dspace.orderedauthors | Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi | en_US | 
| dc.identifier.orcid | https://orcid.org/0000-0001-9965-9777 |  | 
| mit.license | PUBLISHER_CC | en_US | 
| mit.metadata.status | Complete |  |