X-RAY SCATTERING ECHOES AND GHOST HALOS FROM THE INTERGALACTIC MEDIUM: RELATION TO THE NATURE OF AGN VARIABILITY
Author(s)
Corrales, Lia
DownloadCorrales-2015-X-RAY SCATTERING ECH.pdf (501.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 µm, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ~1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly ([> over ~]3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: N[subscript ech] ~ 10[superscript 3](ν[subscript fb]/yr[superscript -1]), where ν[subscript fb] is the characteristic frequency of feedback events capable of dimming an AGN quickly.
Date issued
2015-05Department
MIT Kavli Institute for Astrophysics and Space ResearchJournal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Corrales, Lia. “X-RAY SCATTERING ECHOES AND GHOST HALOS FROM THE INTERGALACTIC MEDIUM: RELATION TO THE NATURE OF AGN VARIABILITY.” The Astrophysical Journal 805, no. 1 (May 15, 2015): 23. © 2015 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X