MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL

Author(s)
Landi, E.; Holst, B. van der; Lepri, Susan T.; Nuevo, F. A.; Frazin, R.; Manchester, W.; Sokolov, I.; Gombosi, T. I.; Oran, Rona; Vasquez, A. M.; ... Show more Show less
Thumbnail
DownloadOran-2015-A STEADY-STATE PICTU.pdf (6.487Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The higher charge states found in slow (<400 km s[superscript −1]) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops and is released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using the Alfvén Wave Solar Model (AWSoM), a global MHD model driven by Alfvén waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge state calculation covering all latitudes in a realistic magnetic field. The ratios O[superscript +7]/O[superscript +6] and C[superscript +6]/C[superscript +5] are compared to in situ Ulysses observations and are found to be higher in the slow wind, as observed; however, they are underpredicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to Extreme-ultraviolet Imaging Spectrometer (EIS) observations above a coronal hole. The agreement is partial and suggests that all ionization rates are underpredicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest that there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows that it originates from coronal hole boundaries (CHBs), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global and observationally supported by EUV tomography.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/98352
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Oran, R., E. Landi, B. van der Holst, S. T. Lepri, A. M. Vasquez, F. A. Nuevo, R. Frazin, W. Manchester, I. Sokolov, and T. I. Gombosi. “A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL.” The Astrophysical Journal 806, no. 1 (June 8, 2015): 55. © 2015 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.