MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

OPTICAL DETECTION OF THE PICTOR A JET AND TIDAL TAIL: EVIDENCE AGAINST AN IC/CMB JET

Author(s)
Gentry, Eric S.; Hardcastle, Martin J.; Perlman, Eric S.; Birkinshaw, Mark; Worrall, Diana M.; Lenc, Emil; Siemiginowska, Aneta; Urry, C. Megan; Marshall, Herman; ... Show more Show less
Thumbnail
DownloadGentry-2015-OPTICAL DETECTION OF.pdf (2.232Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
New images of the FR II radio galaxy Pictor A from the Hubble Space Telescope reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5'' wide (3 kpc projected), starting 18'' (12 kpc) from the center of Pictor A, and extends more than 90'' (60 kpc). The knots are part of a jet observed to be about 4' (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters, we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms that might be used to explain the X-ray flux densities. Our data rule out Doppler-boosted inverse Compton scattering as a source of the high-energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low-energy index (p ~ 2) that dominates the radio band, while a high-energy index (p ~ 3) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/98358
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Gentry, Eric S., Herman L. Marshall, Martin J. Hardcastle, Eric S. Perlman, Mark Birkinshaw, Diana M. Worrall, Emil Lenc, Aneta Siemiginowska, and C. Megan Urry. “OPTICAL DETECTION OF THE PICTOR A JET AND TIDAL TAIL: EVIDENCE AGAINST AN IC/CMB JET.” The Astrophysical Journal 808, no. 1 (July 20, 2015): 92. © 2015 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.