MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ON THE IMF IN A TRIGGERED STAR FORMATION CONTEXT

Author(s)
Zhou, Tingtao; Huang, Chelsea X.; Lin, D. N. C.; Gritschneder, Matthias; Lau, Herbert
Thumbnail
DownloadZhou-2015-ON THE IMF IN A TRIG.pdf (365.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lower than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor-Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/98371
Department
Massachusetts Institute of Technology. Department of Physics
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Zhou, Tingtao, Chelsea X. Huang, D. N. C. Lin, Matthias Gritschneder, and Herbert Lau. “ON THE IMF IN A TRIGGERED STAR FORMATION CONTEXT.” The Astrophysical Journal 808, no. 1 (July 14, 2015): 10. © 2015 The American Astronomical Society
Version: Final published version
ISSN
1538-4357
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.