MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal Hall Effect of Spin Excitations in a Kagome Magnet

Author(s)
Hirschberger, Max; Chisnell, Robin; Lee, Young S.; Ong, N. P.
Thumbnail
DownloadPhysRevLett.115.106603.pdf (978.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity κ[subscript xy]. Here we report observation of a large κ[subscript xy] in the kagome magnet Cu(1-3, bdc) which orders magnetically at 1.8 K. The observed κ[subscript xy] undergoes a remarkable sign reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between κ[subscript xy] and κ[subscript xx] firmly precludes a phonon origin for the thermal Hall effect.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/98381
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Hirschberger, Max, Robin Chisnell, Young S. Lee, and N. P. Ong. “Thermal Hall Effect of Spin Excitations in a Kagome Magnet.” Physical Review Letters 115, no. 10 (September 2015). © 2015 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.