Show simple item record

dc.contributor.authorDelcourt, Michelle
dc.contributor.authorFerber, Asaf
dc.date.accessioned2015-09-08T18:49:02Z
dc.date.available2015-09-08T18:49:02Z
dc.date.issued2015-07
dc.date.submitted2014-10
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/98409
dc.description.abstractIn 1989, Thomassen asked whether there is an integer-valued function f(k) such that every f(k)-connected graph admits a spanning, bipartite k-connected subgraph. In this paper we take a first, humble approach, showing the conjecture is true up to a log n factor.en_US
dc.language.isoen_US
dc.publisherEuropean Mathematical Information Service (EMIS)en_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p2/pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceEuropean Mathematical Information Service (EMIS)en_US
dc.titleOn a Conjecture of Thomassenen_US
dc.typeArticleen_US
dc.identifier.citationDelcourt, Michelle, and Asaf Ferber. "On a Conjecture of Thomassen." The Electronic Journal of Combinatorics 22(3) (2015), #P3.2.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFerber, Asafen_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDelcourt, Michelle; Ferber, Asafen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record