dc.contributor.author | Delcourt, Michelle | |
dc.contributor.author | Ferber, Asaf | |
dc.date.accessioned | 2015-09-08T18:49:02Z | |
dc.date.available | 2015-09-08T18:49:02Z | |
dc.date.issued | 2015-07 | |
dc.date.submitted | 2014-10 | |
dc.identifier.issn | 1077-8926 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/98409 | |
dc.description.abstract | In 1989, Thomassen asked whether there is an integer-valued function f(k) such that every f(k)-connected graph admits a spanning, bipartite k-connected subgraph. In this paper we take a first, humble approach, showing the conjecture is true up to a log n factor. | en_US |
dc.language.iso | en_US | |
dc.publisher | European Mathematical Information Service (EMIS) | en_US |
dc.relation.isversionof | http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p2/pdf | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | European Mathematical Information Service (EMIS) | en_US |
dc.title | On a Conjecture of Thomassen | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Delcourt, Michelle, and Asaf Ferber. "On a Conjecture of Thomassen." The Electronic Journal of Combinatorics 22(3) (2015), #P3.2. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Ferber, Asaf | en_US |
dc.relation.journal | Electronic Journal of Combinatorics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Delcourt, Michelle; Ferber, Asaf | en_US |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |