Show simple item record

dc.contributor.authorHopkins, Samuel Francis
dc.contributor.authorZhang, Ingrid
dc.date.accessioned2015-09-08T19:10:18Z
dc.date.available2015-09-08T19:10:18Z
dc.date.issued2015-06
dc.date.submitted2014-08
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/98411
dc.description.abstractOscillating tableaux are certain walks in Young's lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits. We show that the average weight of all oscillating tableaux of shape λ and length |λ| + 2n (where |λ| denotes the size of λ and n ∈ N) has a surprisingly simple formula: it is a quadratic polynomial in |λ| and n. Our proof via the theory of differential posets is largely computational. We suggest how the homomesy paradigm of Propp and Roby may lead to a more conceptual proof of this result and reveal a hidden symmetry in the set of perfect matchings.en_US
dc.language.isoen_US
dc.publisherEuropean Mathematical Information Service (EMIS)en_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p48/pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceEuropean Mathematical Information Service (EMIS)en_US
dc.titleA note on statistical averages for oscillating tableauxen_US
dc.typeArticleen_US
dc.identifier.citationHopkins, Sam, and Ingrid Zhang. "A note on statistical averages for oscillating tableaux." The Electronic Journal of Combinatorics 22(2) (2015), #P2.48.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorHopkins, Samuel Francisen_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHopkins, Sam; Zhang, Ingriden_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0985-4788
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record