dc.contributor.author | Hopkins, Samuel Francis | |
dc.contributor.author | Zhang, Ingrid | |
dc.date.accessioned | 2015-09-08T19:10:18Z | |
dc.date.available | 2015-09-08T19:10:18Z | |
dc.date.issued | 2015-06 | |
dc.date.submitted | 2014-08 | |
dc.identifier.issn | 1077-8926 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/98411 | |
dc.description.abstract | Oscillating tableaux are certain walks in Young's lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits. We show that the average weight of all oscillating tableaux of shape λ and length |λ| + 2n (where |λ| denotes the size of λ and n ∈ N) has a surprisingly simple formula: it is a quadratic polynomial in |λ| and n. Our proof via the theory of differential posets is largely computational. We suggest how the homomesy paradigm of Propp and Roby may lead to a more conceptual proof of this result and reveal a hidden symmetry in the set of perfect matchings. | en_US |
dc.language.iso | en_US | |
dc.publisher | European Mathematical Information Service (EMIS) | en_US |
dc.relation.isversionof | http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p48/pdf | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | European Mathematical Information Service (EMIS) | en_US |
dc.title | A note on statistical averages for oscillating tableaux | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hopkins, Sam, and Ingrid Zhang. "A note on statistical averages for oscillating tableaux." The Electronic Journal of Combinatorics 22(2) (2015), #P2.48. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Hopkins, Samuel Francis | en_US |
dc.relation.journal | Electronic Journal of Combinatorics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Hopkins, Sam; Zhang, Ingrid | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-0985-4788 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |