Show simple item record

dc.contributor.authorArtemova, Tatiana
dc.contributor.authorGerardin, Ylaine
dc.contributor.authorDudley, Carmel
dc.contributor.authorVega, Nic
dc.contributor.authorGore, Jeff
dc.date.accessioned2015-09-11T16:44:45Z
dc.date.available2015-09-11T16:44:45Z
dc.date.issued2015-07
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/98465
dc.description.abstractBacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single‐cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01GM102311-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R00 Pathways to Independence GM085279-02)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER PHY-1055154)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship BR2011-066)en_US
dc.description.sponsorshipPaul Allen Foundation (Distinguished Investigator Program)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (New Innovator DP2)en_US
dc.description.sponsorshipPew Charitable Trusts (Pew Scholars Program in Biomedical Sciences 2010-000224-007)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.15252/msb.20145888en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleIsolated cell behavior drives the evolution of antibiotic resistanceen_US
dc.typeArticleen_US
dc.identifier.citationArtemova, T., Y. Gerardin, C. Dudley, N. M. Vega, and J. Gore. “Isolated Cell Behavior Drives the Evolution of Antibiotic Resistance.” Molecular Systems Biology 11, no. 7 (July 1, 2015): 822–822.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorArtemova, Tatianaen_US
dc.contributor.mitauthorDudley, Carmelen_US
dc.contributor.mitauthorVega, Nicen_US
dc.contributor.mitauthorGore, Jeffen_US
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsArtemova, T.; Gerardin, Y.; Dudley, C.; Vega, N. M.; Gore, J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4583-8555
dc.identifier.orcidhttps://orcid.org/0000-0001-5532-2822
dc.identifier.orcidhttps://orcid.org/0000-0002-9929-6109
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record