Show simple item record

dc.contributor.authorLi, Sa
dc.contributor.authorZhao, Yu Cheng
dc.contributor.authorWang, Chao
dc.contributor.authorWang, Chang An
dc.contributor.authorLi, Ju
dc.contributor.authorNiu, Jun Jie
dc.contributor.authorSo, Kangpyo
dc.date.accessioned2015-09-14T12:26:22Z
dc.date.available2015-09-14T12:26:22Z
dc.date.issued2015-08
dc.date.submitted2015-02
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/98470
dc.description.abstractAlloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO[subscript 2] shell (~3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g[superscript −1] after 500 cycles, with a 3 mg cm[superscript −2] loading. At 1 C, the capacity is approximately 1,200 mAh g[superscript −1] after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1120901)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (51221291)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (51172119)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms8872en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleHigh-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacityen_US
dc.typeArticleen_US
dc.identifier.citationLi, Sa, Junjie Niu, Yu Cheng Zhao, Kang Pyo So, Chao Wang, Chang An Wang, and Ju Li. “High-Rate Aluminium Yolk-Shell Nanoparticle Anode for Li-Ion Battery with Long Cycle Life and Ultrahigh Capacity.” Nat Comms 6 (August 5, 2015): 7872. © 2015 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorNiu, Jun Jieen_US
dc.contributor.mitauthorSo, Kangpyoen_US
dc.contributor.mitauthorWang, Chaoen_US
dc.contributor.mitauthorLi, Juen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLi, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Juen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2719-4082
dc.identifier.orcidhttps://orcid.org/0000-0003-2183-228X
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record