Show simple item record

dc.contributor.authorDettmer, Ulf
dc.contributor.authorNewman, Andrew J.
dc.contributor.authorSoldner, Frank
dc.contributor.authorLuth, Eric S.
dc.contributor.authorKim, Nora C.
dc.contributor.authorvon Saucken, Victoria E.
dc.contributor.authorSanderson, John B.
dc.contributor.authorJaenisch, Rudolf
dc.contributor.authorBartels, Tim
dc.contributor.authorSelkoe, Dennis
dc.date.accessioned2015-09-14T13:41:43Z
dc.date.available2015-09-14T13:41:43Z
dc.date.issued2015-06
dc.date.submitted2015-02
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/98476
dc.description.abstractβ-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson’s disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 5R37 CA84198)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant HD045022)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms8314en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleParkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiationen_US
dc.typeArticleen_US
dc.identifier.citationDettmer, Ulf, Andrew J. Newman, Frank Soldner, Eric S. Luth, Nora C. Kim, Victoria E. von Saucken, John B. Sanderson, Rudolf Jaenisch, Tim Bartels, and Dennis Selkoe. “Parkinson-Causing α-Synuclein Missense Mutations Shift Native Tetramers to Monomers as a Mechanism for Disease Initiation.” Nature Communications 6 (June 16, 2015): 7314. © 2015 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorJaenisch, Rudolfen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDettmer, Ulf; Newman, Andrew J.; Soldner, Frank; Luth, Eric S.; Kim, Nora C.; von Saucken, Victoria E.; Sanderson, John B.; Jaenisch, Rudolf; Bartels, Tim; Selkoe, Dennisen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record