MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices

Author(s)
Lo, Justin H.; Bassett, Erik K.; Penson, Elliot J. N.; Hoganson, David M.; Vacanti, Joseph P.
Thumbnail
DownloadLo-2015-Gas Transfer in Cell.pdf (364.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ~288 mL/min/m[superscript 2] of oxygen and ~685 mL/min/m[superscript 2] of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO[subscript 2]. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/98486
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Tissue Engineering Part A
Publisher
Mary Ann Liebert, Inc.
Citation
Lo, Justin H., Erik K. Bassett, Elliot J. N. Penson, David M. Hoganson, and Joseph P. Vacanti. “Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.” Tissue Engineering Part A 21, no. 15–16 (August 2015): 2147–2155. © 2015 Mary Ann Liebert, Inc.
Version: Final published version
ISSN
1937-3341
1937-335X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.