Show simple item record

dc.contributor.authorGamarnik, David
dc.contributor.authorKatz, Dmitriy
dc.date.accessioned2015-09-18T16:34:02Z
dc.date.available2015-09-18T16:34:02Z
dc.date.issued2014-10
dc.date.submitted2014-09
dc.identifier.issn0257-0130
dc.identifier.issn1572-9443
dc.identifier.urihttp://hdl.handle.net/1721.1/98836
dc.description.abstractThe Skorokhod problem arises in studying reflected Brownian motion (RBM) and the associated fluid model on the non-negative orthant. This problem specifically arises in the context of queueing networks in the heavy traffic regime. One of the key problems is that of determining, for a given deterministic Skorokhod problem, whether for every initial condition all solutions of the problem staring from the initial condition are attracted to the origin. The conditions for this attraction property, called stability, are known in dimension up to three, but not for general dimensions. In this paper we explain the fundamental difficulties encountered in trying to establish stability conditions for general dimensions. We prove the existence of dimension d[subscript 0] such that stability of the Skorokhod problem associated with a fluid model of an RBM in dimension d ≥ d[subscript 0] is an undecidable property, when the starting state is a part of the input. Namely, there does not exist an algorithm (a constructive procedure) for identifying stable Skorokhod problem in dimensions d ≥ d[subscript 0].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-0726733)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11134-014-9424-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleStability of Skorokhod problem is undecidableen_US
dc.title.alternativeThe stability of the deterministic Skorokhod problem is undecidableen_US
dc.typeArticleen_US
dc.identifier.citationGamarnik, David, and Dmitriy Katz. “The Stability of the Deterministic Skorokhod Problem Is Undecidable.” Queueing Systems 79, no. 3–4 (October 19, 2014): 221–249.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorGamarnik, Daviden_US
dc.relation.journalQueueing Systemsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGamarnik, David; Katz, Dmitriyen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8898-8778
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record