Show simple item record

dc.contributor.authorShafto, Patrick
dc.contributor.authorKemp, Charles
dc.contributor.authorMansinghka, Vikash K.
dc.contributor.authorTenenbaum, Joshua B.
dc.date.accessioned2015-09-18T17:48:40Z
dc.date.available2015-09-18T17:48:40Z
dc.date.issued2011-03
dc.date.submitted2011-02
dc.identifier.issn00100277
dc.identifier.urihttp://hdl.handle.net/1721.1/98846
dc.description.abstractMost natural domains can be represented in multiple ways: we can categorize foods in terms of their nutritional content or social role, animals in terms of their taxonomic groupings or their ecological niches, and musical instruments in terms of their taxonomic categories or social uses. Previous approaches to modeling human categorization have largely ignored the problem of cross-categorization, focusing on learning just a single system of categories that explains all of the features. Cross-categorization presents a difficult problem: how can we infer categories without first knowing which features the categories are meant to explain? We present a novel model that suggests that human cross-categorization is a result of joint inference about multiple systems of categories and the features that they explain. We also formalize two commonly proposed alternative explanations for cross-categorization behavior: a features-first and an objects-first approach. The features-first approach suggests that cross-categorization is a consequence of attentional processes, where features are selected by an attentional mechanism first and categories are derived second. The objects-first approach suggests that cross-categorization is a consequence of repeated, sequential attempts to explain features, where categories are derived first, then features that are poorly explained are recategorized. We present two sets of simulations and experiments testing the models’ predictions about human categorization. We find that an approach based on joint inference provides the best fit to human categorization behavior, and we suggest that a full account of human category learning will need to incorporate something akin to these capabilities.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cognition.2011.02.010en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleA probabilistic model of cross-categorizationen_US
dc.typeArticleen_US
dc.identifier.citationShafto, Patrick, Charles Kemp, Vikash Mansinghka, and Joshua B. Tenenbaum. “A Probabilistic Model of Cross-Categorization.” Cognition 120, no. 1 (July 2011): 1–25.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorTenenbaum, Joshua B.en_US
dc.relation.journalCognitionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsShafto, Patrick; Kemp, Charles; Mansinghka, Vikash; Tenenbaum, Joshua B.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record