MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Scalable, 2.9 mW, 1 Mb/s e-Textiles Body Area Network Transceiver with Remotely-Powered Nodes and Bi-Directional Data Communication

Author(s)
Desai, Nachiket; Yoo, Jerald; Chandrakasan, Anantha P.
Thumbnail
DownloadMain article (final proof submitted after revisions) (5.274Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents transceivers and a wireless power delivery system for a Body-Area Network (BAN) that uses an e-textiles-based physical layer (PHY) capable of linking a diverse set of sensor nodes monitoring vital signs on the user's body. A central base station in the network controls power delivery and communication resource allotment for every node using a general-purpose on-chip Node Network Interface (NNI). The architecture of the network ensures fault-tolerance, reconfigurability and ease of use through a dual wireless-wireline topology. The nodes are powered at a peak end-to-end efficiency of 1.2% and can transmit measured data at a peak rate of 1 Mb/s. Modulation schemes for communication in both directions have been chosen and a Medium Access and Control (MAC) protocol has been designed and implemented on chip to reduce complexity at the power-constrained nodes, and move it to the base station. While transferring power to a single node at maximum efficiency, the base station consumes 2.9 mW power and the node recovers 34 µW, of which 14 µW is used to power the network interface circuits while the rest can be used to power signal acquisition circuitry. Fabricated in 0.18 µm CMOS technology, the base station and the NNI occupy 2.95 mm 2 and 1.46 mm 2 area, respectively.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/98890
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Journal of Solid-State Circuits
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Desai, Nachiket, Jerald Yoo, and Anantha P. Chandrakasan. “A Scalable, 2.9 mW, 1 Mb/s E-Textiles Body Area Network Transceiver With Remotely-Powered Nodes and Bi-Directional Data Communication.” IEEE Journal of Solid-State Circuits 49, no. 9 (September 2014): 1995–2004.
Version: Author's final manuscript
ISSN
0018-9200
1558-173X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.