Show simple item record

dc.contributor.authorMower, Jacob
dc.contributor.authorSteinbrecher, Gregory R.
dc.contributor.authorLahini, Yoav
dc.contributor.authorHarris, Nicholas Christopher
dc.contributor.authorEnglund, Dirk Robert
dc.date.accessioned2015-09-24T17:23:34Z
dc.date.available2015-09-24T17:23:34Z
dc.date.issued2015-09
dc.date.submitted2015-02
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/98899
dc.description.abstractWe propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics controlled-not and controlled-phase gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate an experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high-fidelity operation.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-14-1-0052)en_US
dc.description.sponsorshipiQuISE Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)en_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Sloan Research Fellowship)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.92.032322en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleHigh-fidelity quantum state evolution in imperfect photonic integrated circuitsen_US
dc.typeArticleen_US
dc.identifier.citationMower, Jacob, Nicholas C. Harris, Gregory R. Steinbrecher, Yoav Lahini, and Dirk Englund. "High-fidelity quantum state evolution in imperfect photonic integrated circuits." Phys. Rev. A 92, 032322 (September 2015). © 2015 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorMower, Jacoben_US
dc.contributor.mitauthorHarris, Nicholas Christopheren_US
dc.contributor.mitauthorSteinbrecher, Gregory R.en_US
dc.contributor.mitauthorLahini, Yoaven_US
dc.contributor.mitauthorEnglund, Dirk Roberten_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2015-09-22T22:00:22Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsMower, Jacob; Harris, Nicholas C.; Steinbrecher, Gregory R.; Lahini, Yoav; Englund, Dirken_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5150-7800
dc.identifier.orcidhttps://orcid.org/0000-0002-1266-4678
dc.identifier.orcidhttps://orcid.org/0000-0001-9895-0191
dc.identifier.orcidhttps://orcid.org/0000-0003-3009-563X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record