Show simple item record

dc.contributor.authorNarasimhan, Karthik Rajagopal
dc.contributor.authorKulkarni, Tejas Dattatraya
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2015-09-24T17:33:12Z
dc.date.available2015-09-24T17:33:12Z
dc.date.issued2015-09
dc.identifier.urihttp://hdl.handle.net/1721.1/98900
dc.description.abstractIn this paper, we consider the task of learning control policies for text-based games. In these games, all interactions in the virtual world are through text and the underlying state is not observed. The resulting language barrier makes such environments challenging for automatic game players. We employ a deep reinforcement learning framework to jointly learn state representations and action policies using game rewards as feedback. This framework enables us to map text descriptions into vector representations that capture the semantics of the game states. We evaluate our approach on two game worlds, comparing against baselines using bag-of-words and bag-of-bigrams for state representations. Our algorithm outperforms the baselines on both worlds demonstrating the importance of learning expressive representations.en_US
dc.description.sponsorshipLeventhal Fellowshipen_US
dc.description.sponsorshipMIT Center for Brains, Minds and Machinesen_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttps://aclweb.org/anthology/D/D15/D15-1001.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceNarasimhanen_US
dc.titleLanguage Understanding for Text-based Games using Deep Reinforcement Learningen_US
dc.typeArticleen_US
dc.identifier.citationNarasimhan, Karthik, Tejas D. Kulkarni, and Regina Barzilay. "Language Understanding for Text-based Games using Deep Reinforcement Learning." 2015 Conference on Empirical Methods in Natural Language Processing (September 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverNarasimhan, Karthik Rajagopalen_US
dc.contributor.mitauthorNarasimhan, Karthik Rajagopalen_US
dc.contributor.mitauthorKulkarni, Tejas Dattatrayaen_US
dc.contributor.mitauthorBarzilay, Reginaen_US
dc.relation.journalProceedings of the 2015 Conference on Empirical Methods in Natural Language Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsNarasimhan, Karthik; Kulkarni, Tejas D.; Barzilay, Reginaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7077-2765
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0001-9894-9983
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record