The submodular joint replenishment problem
Author(s)
Cheung, Maurice; Elmachtoub, Adam N.; Levi, Retsef; Shmoys, David B.
DownloadLevi_The submodular.pdf (485.3Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The joint replenishment problem is a fundamental model in supply chain management theory that has applications in inventory management, logistics, and maintenance scheduling. In this problem, there are multiple item types, each having a given time-dependent sequence of demands that need to be satisfied. In order to satisfy demand, orders of the item types must be placed in advance of the due dates for each demand. Every time an order of item types is placed, there is an associated joint setup cost depending on the subset of item types ordered. This ordering cost can be due to machine, transportation, or labor costs, for example. In addition, there is a cost to holding inventory for demand that has yet to be served. The overall goal is to minimize the total ordering costs plus inventory holding costs. In this paper, the cost of an order, also known as a joint setup cost, is a monotonically increasing, submodular function over the item types. For this general problem, we show that a greedy approach provides an approximation guarantee that is logarithmic in the number of demands. Then we consider three special cases of submodular functions which we call the laminar, tree, and cardinality cases, each of which can model real world scenarios that previously have not been captured. For each of these cases, we provide a constant factor approximation algorithm. Specifically, we show that the laminar case can be solved optimally in polynomial time via a dynamic programming approach. For the tree and cardinality cases, we provide two different linear programming based approximation algorithms that provide guarantees of three and five, respectively.
Date issued
2015-07Department
Sloan School of ManagementJournal
Mathematical Programming
Publisher
Springer-Verlag
Citation
Cheung, Maurice, Adam N. Elmachtoub, Retsef Levi, and David B. Shmoys. “The Submodular Joint Replenishment Problem.” Mathematical Programming, July 3, 2015.
Version: Original manuscript
ISSN
0025-5610
1436-4646