MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growing a list

Author(s)
Letham, Benjamin; Rudin, Cynthia; Heller, Katherine A.
Thumbnail
DownloadRudin_Growing a list.pdf (785.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
It is easy to find expert knowledge on the Internet on almost any topic, but obtaining a complete overview of a given topic is not always easy: information can be scattered across many sources and must be aggregated to be useful. We introduce a method for intelligently growing a list of relevant items, starting from a small seed of examples. Our algorithm takes advantage of the wisdom of the crowd, in the sense that there are many experts who post lists of things on the Internet. We use a collection of simple machine learning components to find these experts and aggregate their lists to produce a single complete and meaningful list. We use experiments with gold standards and open-ended experiments without gold standards to show that our method significantly outperforms the state of the art. Our method uses the ranking algorithm Bayesian Sets even when its underlying independence assumption is violated, and we provide a theoretical generalization bound to motivate its use.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/99125
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Journal
Data Mining and Knowledge Discovery
Publisher
Springer-Verlag
Citation
Letham, Benjamin, Cynthia Rudin, and Katherine A. Heller. “Growing a List.” Data Mining and Knowledge Discovery 27, no. 3 (November 2013): 372–95.
Version: Author's final manuscript
ISSN
1384-5810
1573-756X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.