Influence of microphysics on the scaling of precipitation extremes with temperature
Author(s)
Singh, Martin Simran; O'Gorman, Paul
DownloadO'Gorman_Influence of.pdf (761.5Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Simulations of radiative-convective equilibrium with a cloud-system resolving model are used to investigate the scaling of high percentiles of the precipitation distribution (precipitation extremes) over a wide range of surface temperatures. At surface temperatures above roughly 295 K, precipitation extremes increase with warming in proportion to the increase in surface moisture, following what is termed Clausius-Clapeyron (CC) scaling. At lower temperatures, the rate of increase of precipitation extremes depends on the choice of cloud and precipitation microphysics scheme and the accumulation period, and it differs markedly from CC scaling in some cases. Precipitation extremes are found to be sensitive to the fall speeds of hydrometeors, and this partly explains the different scaling results obtained with different microphysics schemes. The results suggest that microphysics play an important role in determining the response of convective precipitation extremes to warming, particularly when ice- and mixed-phase processes are important.
Date issued
2014-08Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Geophysical Research Letters
Publisher
Wiley Blackwell
Citation
Singh, Martin S., and Paul A. O’Gorman. “Influence of Microphysics on the Scaling of Precipitation Extremes with Temperature.” Geophysical Research Letters 41, no. 16 (August 22, 2014): 6037–6044. © 2014 American Geophysical Union
Version: Final published version
ISSN
00948276