Wave–vortex decomposition of one-dimensional ship-track data
Author(s)
Ferrari, Raffaele; Callies, Joern; Buhler, Oliver
DownloadHelmWVpaper14rev1.pdf (540.1Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We present a simple two-step method by which one-dimensional spectra of horizontal velocity and buoyancy measured along a ship track can be decomposed into a wave component consisting of inertia–gravity waves and a vortex component consisting of a horizontal flow in geostrophic balance. The method requires certain assumptions for the data regarding stationarity, homogeneity, and horizontal isotropy. In the first step an exact Helmholtz decomposition of the horizontal velocity spectra into rotational and divergent components is performed and in the second step an energy equipartition property of hydrostatic inertia–gravity waves is exploited that allows a diagnosis of the wave energy spectrum solely from the observed horizontal velocities. The observed buoyancy spectrum can then be used to compute the residual vortex energy spectrum. Further wave–vortex decompositions of the observed fields are possible if additional information about the frequency content of the waves is available. We illustrate the method on two recent oceanic data sets from the North Pacific and the Gulf Stream. Notably, both steps in our new method might be of broader use in the theoretical and observational study of atmosphere and ocean fluid dynamics.
Date issued
2014-09Department
Joint Program in Oceanography/Applied Ocean Science and Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Woods Hole Oceanographic InstitutionJournal
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Citation
Buhler, Oliver, Jorn Callies, and Raffaele Ferrari. “Wave–vortex Decomposition of One-Dimensional Ship-Track Data.” Journal of Fluid Mechanics 756 (September 9, 2014): 1007–1026.
Version: Author's final manuscript
ISSN
0022-1120
1469-7645