MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zebrafish immunoglobulin IgD: Unusual exon usage and quantitative expression profiles with IgM and IgZ/T heavy chain isotypes

Author(s)
Zimmerman, Anastasia M.; Moustafa, Farah M.; Romanowski, Kryzstof E.; Steiner, Lisa A.
Thumbnail
DownloadSteiner_Zebrafish immunoglobulin.pdf (887.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The zebrafish is an emerging model for comparative immunology and biomedical research. In contrast to the five heavy chain isotype system of mice and human (IgD, IgM, IgA, IgG, IgE), zebrafish harbor gene segments for IgD, IgM, and novel heavy chain isotype called IgZ/T which appears restricted to bony fishes. The purpose of this study was to design and validate a suite of quantitative real time RT-PCR protocols to measure IgH expression in a vertebrate model which has considerable promise for modeling both pathogenic infection and chronic conditions leading to immune dysfunction. Specific primers were designed and following verification of their specificty, relative expression levels of IgD, IgM, and IgZ/T were measured in triplicate for zebrafish raised under standard laboratory conditions. During embryonic stages, low levels of each heavy chain isotype (IgH) were detected with each increasing steadily between 2 and 17 weeks post fertilization. Overall IgM > IgZ > IgD throughout zebrafish development with the copy number of IgM being several fold higher than that of IgD or IgZ/T. IgD exon usage was also characterized, as its extremely long size and presence of a stop codon in the second IgD exon in zebrafish, raised questions as to how this antibody might be expressed. Zebrafish IgD was found to be a chimeric immunoglobulin, with the third IgD exon spliced to the first IgM constant exon thereby circumventing the first and second IgD exons. Collectively, the qRT-PCR results represent the first comparative profile of IgD, IgM, IgZ/T expression over the lifespan of any fish species and the primers and assay parameters reported should prove useful in enabling researchers to rapidly quantify changes in IgH expression in zebrafish models of disease where altered IgH expression is manifested.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/99177
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Molecular Immunology
Publisher
Elsevier
Citation
Zimmerman, Anastasia M., Farah M. Moustafa, Kryzstof E. Romanowski, and Lisa A. Steiner. “Zebrafish Immunoglobulin IgD: Unusual Exon Usage and Quantitative Expression Profiles with IgM and IgZ/T Heavy Chain Isotypes.” Molecular Immunology 48, no. 15–16 (September 2011): 2220–2223.
Version: Author's final manuscript
ISSN
01615890

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.