MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences

Author(s)
Cao, Bo; Chen, Chao; DeMott, Michael S.; Cheng, Qiuxiang; Clark, Tyson A.; Xiong, Xiaolin; Zheng, Xiaoqing; Levine, Stuart S.; Yuan, George; Boitano, Matthew; Luong, Khai; Song, Yi; Zhou, Xiufen; Deng, Zixin; Turner, Stephen W.; Korlach, Jonas; You, Delin; Wang, Lianrong; Chen, Shi; Butty, Vincent L G; Dedon, Peter C; ... Show more Show less
Thumbnail
DownloadDedon_Genomic mapping.pdf (1.449Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across the genomes of B7A and FF75 with >90% agreement: single molecule, real-time sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT on both strands of G[subscript ps]AAC/G[subscript ps]TTC motifs, but with only 12% of 40,701 possible sites modified. In contrast, PT in FF75 occurs as a single-strand modification at C[subscript ps]CA, again with only 14% of 160,541 sites modified. Single-molecule analysis indicates that modification could be partial at any particular genomic site even with active restriction by DndF-H, with direct interaction of modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results point to highly unusual target selection by PT-modification proteins and rule out known R-M mechanisms.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/99339
Department
Massachusetts Institute of Technology. Center for Environmental Health Sciences; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Biology
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Cao, Bo, Chao Chen, Michael S. DeMott, Qiuxiang Cheng, Tyson A. Clark, Xiaolin Xiong, Xiaoqing Zheng, et al. “Genomic Mapping of Phosphorothioates Reveals Partial Modification of Short Consensus Sequences.” Nat Comms 5 (June 5, 2014).
Version: Author's final manuscript
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.