Show simple item record

dc.contributor.authorSzabo, Peter
dc.contributor.authorMcKinley, Gareth H.
dc.contributor.authorClasen, Christian
dc.date.accessioned2015-10-16T13:03:13Z
dc.date.available2015-10-16T13:03:13Z
dc.date.issued2011-11
dc.date.submitted2011-09
dc.identifier.issn03770257
dc.identifier.urihttp://hdl.handle.net/1721.1/99353
dc.description.abstractWe revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment is analyzed numerically using the FENE-P model and two alternative kinematic descriptions; employing either an axially-uniform filament approximation or a quasi two-dimensional Lagrangian description of the elongating thread. In addition, a second order pertubation theory for the trajectory of the falling mass is developed for simple viscous filaments. Based on these theoretical considerations we develop an expression that enables estimation of the finite extensibility parameter characterizing the polymer solution in terms of quantities that can be extracted directly from simple measurement of the time-dependent filament diameter.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jnnfm.2011.11.003en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleConstant force extensional rheometry of polymer solutionsen_US
dc.typeArticleen_US
dc.identifier.citationSzabo, Peter, Gareth H. McKinley, and Christian Clasen. “Constant Force Extensional Rheometry of Polymer Solutions.” Journal of Non-Newtonian Fluid Mechanics 169–70 (February 2012): 26–41.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.relation.journalJournal of Non-Newtonian Fluid Mechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSzabo, Peter; McKinley, Gareth H.; Clasen, Christianen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record