MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly stable, ligand-clustered “patchy” micelle nanocarriers for systemic tumor targeting

Author(s)
Poon, Zhiyong; Lee, Jung Ah; Huang, Shenwen; Prevost, Richard J.; Hammond, Paula T.
Thumbnail
DownloadHammond_Highly stable.pdf (1.625Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
A novel linear-dendritic block copolymer has been synthesized and evaluated for targeted delivery. The use of the dendron as the micellar exterior block in this architecture allows the presentation of a relatively small quantity of ligands in clusters for enhanced targeting, thus maintaining a long circulation time of these “patchy” micelles. The polypeptide linear hydrophobic block drives formation of micelles that carry core-loaded drugs, and their unique design gives them extremely high stability in vivo. We have found that these systems lead to extended time periods of increased accumulation in the tumor (up to 5 days) compared with nontargeted vehicles. We also demonstrate a fourfold increase in efficacy of paclitaxel when delivered in the targeted nanoparticle systems, while significantly decreasing in vivo toxicity of the chemotherapy treatment.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/99388
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Nanomedicine: Nanotechnology, Biology and Medicine
Publisher
Elsevier
Citation
Poon, Zhiyong, Jung Ah Lee, Shenwen Huang, Richard J. Prevost, and Paula T. Hammond. “Highly Stable, Ligand-Clustered ‘patchy’ Micelle Nanocarriers for Systemic Tumor Targeting.” Nanomedicine: Nanotechnology, Biology and Medicine 7, no. 2 (April 2011): 201–209.
Version: Author's final manuscript
ISSN
15499634

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.