Show simple item record

dc.contributor.authorSamuel, Raymond E.
dc.contributor.authorPaik, Daniel H.
dc.contributor.authorFang, Jean C.
dc.contributor.authorSchmidt, Daniel J.
dc.contributor.authorShukla, A.
dc.contributor.authorWang, Mary
dc.contributor.authorHammond, Paula T
dc.date.accessioned2015-10-21T15:24:11Z
dc.date.available2015-10-21T15:24:11Z
dc.date.issued2011-07
dc.date.submitted2011-05
dc.identifier.issn01429612
dc.identifier.issn1878-5905
dc.identifier.urihttp://hdl.handle.net/1721.1/99389
dc.description.abstractThe integration of orthopedic implants with host bone presents a major challenge in joint arthroplasty, spinal fusion and tumor reconstruction. The cellular microenvironment can be programmed via implant surface functionalization allowing direct modulation of osteoblast adhesion, proliferation, and differentiation at the implant–bone interface. The development of layer-by-layer assembled polyelectrolyte multilayer (PEM) architectures has greatly expanded our ability to fabricate intricate nanometer to micron scale thin film coatings that conform to complex implant geometries. The in vivo therapeutic efficacy of thin PEM implant coatings for numerous biomedical applications has previously been reported. We have fabricated protamine-based PEM thin films that support the long-term proliferation and differentiation of pre-osteoblast cells on non-cross-linked film-coated surfaces. These hydrophilic PEM functionalized surfaces with nanometer-scale roughness facilitated increased deposition of calcified matrix by osteoblasts in vitro, and thus offer the potential to enhance implant integration with host bone. The coatings can make an immediate impact in the osteogenic culture of stem cells and assessment of the osteogenic potential of new therapeutic factors.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (National Institute on Aging Grant 5R01AG029601)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.biomaterials.2011.06.032en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleOsteoconductive protamine-based polyelectrolyte multilayer functionalized surfacesen_US
dc.typeArticleen_US
dc.identifier.citationSamuel, Raymond E., Anita Shukla, Daniel H. Paik, Mary X. Wang, Jean C. Fang, Daniel J. Schmidt, and Paula T. Hammond. “Osteoconductive Protamine-Based Polyelectrolyte Multilayer Functionalized Surfaces.” Biomaterials 32, no. 30 (October 2011): 7491–7502.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorSamuel, Raymond E.en_US
dc.contributor.mitauthorShukla, Anitaen_US
dc.contributor.mitauthorPaik, Daniel H.en_US
dc.contributor.mitauthorWang, Mary X.en_US
dc.contributor.mitauthorFang, Jean C.en_US
dc.contributor.mitauthorSchmidt, Daniel J.en_US
dc.contributor.mitauthorHammond, Paula T.en_US
dc.relation.journalBiomaterialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSamuel, Raymond E.; Shukla, Anita; Paik, Daniel H.; Wang, Mary X.; Fang, Jean C.; Schmidt, Daniel J.; Hammond, Paula T.en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record