MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable dual growth factor delivery from polyelectrolyte multilayer films

Author(s)
Shah, Nisarg J.; Macdonald, Mara L.; Beben, Yvette M.; Padera, Robert F.; Samuel, Raymond E.; Hammond, Paula T.; ... Show more Show less
Thumbnail
DownloadHammond_Tunable dual.pdf (1.796Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
A promising strategy to accelerate joint implant integration and reduce recovery time and failure rates is to deliver a combination of certain growth factors to the integration site. There is a need to control the quantity of growth factors delivered at different times during the healing process to maximize efficacy. Polyelectrolyte multilayer (PEM) films, built using the layer-by-layer (LbL) technique, are attractive for releasing controlled amounts of potent growth factors over a sustained period. Here, we present PEM films that sequester physiological amounts of osteogenic rhBMP-2 (recombinant human bone morphogenetic protein - 2) and angiogenic rhVEGF[subscript 165] (recombinant human vascular endothelial growth factor) in different ratios in a degradable [poly(β-amino ester)/polyanion/growth factor/polyanion] LbL tetralayer repeat architecture where the biologic load scaled linearly with the number of tetralayers. No burst release of either growth factor was observed as the films degraded. The release of rhBMP-2 was sustained over a period of 2 weeks, while rhVEGF[subscript 165] eluted from the film over the first 8 days. Both growth factors retained their efficacy, as quantified with relevant in vitro assays. rhBMP-2 initiated a dose dependent differentiation cascade in MC3T3-E1S4 pre-osteoblasts while rhVEGF[subscript 165] upregulated HUVEC proliferation, and accelerated closure of a scratch in HUVEC cell cultures in a dose dependent manner. In vivo, the mineral density of ectopic bone formed de novo by rhBMP-2/rhVEGF[subscript 165] PEM films was approximately 33% higher than when only rhBMP-2 was introduced, with a higher trabecular thickness, which would indicate a decrease in the risk of osteoporotic fracture. Bone formed throughout the scaffold when both growth factors were released, which suggests more complete remodeling due to an increased local vascular network. This study demonstrates a promising approach to delivering precise doses of multiple growth factors for a variety of implant applications where control over spatial and temporal release profile of the biologic is desired.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/99392
Department
David H. Koch Institute for Integrative Cancer Research at MIT; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Biomaterials
Publisher
Elsevier
Citation
Shah, Nisarg J., Mara L. Macdonald, Yvette M. Beben, Robert F. Padera, Raymond E. Samuel, and Paula T. Hammond. “Tunable Dual Growth Factor Delivery from Polyelectrolyte Multilayer Films.” Biomaterials 32, no. 26 (September 2011): 6183–6193.
Version: Author's final manuscript
ISSN
01429612
1878-5905

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.