Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness
Author(s)
Kotecki, Maciej; Zeiger, Adam S.; Van Vliet, Krystyn J.; Herman, Ira M.
DownloadVan Vliet_Calpain- and Talin.pdf (898.4Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Pericytes surround capillary endothelial cells and exert contractile forces modulating microvascular tone and endothelial growth. We previously described pericyte contractile phenotype to be Rho GTPase- and α-smooth muscle actin (αSMA)-dependent. However, mechanisms mediating adhesion-dependent shape changes and contractile force transduction remain largely equivocal. We now report that the neutral cysteine protease, calpain, modulates pericyte contractility and cellular stiffness via talin, an integrin-binding and F-actin associating protein. Digital imaging and quantitative analyses of living cells reveal significant perturbations in contractile force transduction detected via deformation of silicone substrata, as well as perturbations of mechanical stiffness in cellular contractile subdomains quantified via atomic force microscope (AFM)-enabled nanoindentation. Pericytes overexpressing GFP-tagged talin show significantly enhanced contractility (~ two-fold), which is mitigated when either the calpain-cleavage resistant mutant talin L432G or vinculin are expressed. Moreover, the cell-penetrating, calpain-specific inhibitor termed CALPASTAT reverses talin-enhanced, but not Rho GTP-dependent, contractility. Interestingly, our analysis revealed that CALPASTAT, but not its inactive mutant, alters contractile cell-driven substrata deformations while increasing mechanical stiffness of subcellular contractile regions of these pericytes. Altogether, our results reveal that calpain-dependent cleavage of talin modulates cell contractile dynamics, which in pericytes may prove instrumental in controlling normal capillary function or microvascular pathophysiology.
Date issued
2010-08Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Microvascular Research
Publisher
Elsevier
Citation
Kotecki, Maciej, Adam S. Zeiger, Krystyn J. Van Vliet, and Ira M. Herman. “Calpain- and Talin-Dependent Control of Microvascular Pericyte Contractility and Cellular Stiffness.” Microvascular Research 80, no. 3 (December 2010): 339–348.
Version: Author's final manuscript
ISSN
00262862
1095-9319