Show simple item record

dc.contributor.authorMin, Younjin
dc.contributor.authorDeMuth, Peter Charles
dc.contributor.authorIrvine, Darrell J
dc.contributor.authorHammond, Paula T
dc.date.accessioned2015-10-23T17:28:23Z
dc.date.available2015-10-23T17:28:23Z
dc.date.issued2013-07
dc.date.submitted2013-04
dc.identifier.issn21922640
dc.identifier.urihttp://hdl.handle.net/1721.1/99437
dc.description.abstractMicroneedle vaccines mimic several aspects of cutaneous pathogen invasion by targeting antigen to skin-resident dendritic cells and triggering local inflammatory responses in the skin, which are correlated with enhanced immune responses. Here, we tested whether control over vaccine delivery kinetics can enhance immunity through further mimicry of kinetic profiles present during natural acute infections. An approach for the fabrication of silk/poly(acrylic acid) (PAA) composite microneedles composed of a silk tip supported on a PAA base is reported. On brief application of microneedle patches to skin, the PAA bases rapidly dissolved to deliver a protein subunit vaccine bolus, while also implanting persistent silk hydrogel depots into the skin for a low-level sustained cutaneous vaccine release over 1–2 weeks. Use of this platform to deliver a model whole-protein vaccine with optimized release kinetics resulted in >10-fold increases in antigen-specific T-cell and humoral immune responses relative to traditional parenteral needle-based immunization.en_US
dc.description.sponsorshipRagon Institute of MGH, MIT and Harvarden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI095109)en_US
dc.description.sponsorshipUnited States. Dept. of Defense (Contract W911NF-13-D-0001)en_US
dc.description.sponsorshipUnited States. Dept. of Defense (Contract W911NF-07-D0004)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/adhm.201300139en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleImplantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunizationen_US
dc.typeArticleen_US
dc.identifier.citationDeMuth, Peter C., Younjin Min, Darrell J. Irvine, and Paula T. Hammond. “Implantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunization.” Advanced Healthcare Materials 3, no. 1 (July 12, 2013): 47–58.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentRagon Institute of MGH, MIT and Harvarden_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorDeMuth, Peter C.en_US
dc.contributor.mitauthorMin, Younjinen_US
dc.contributor.mitauthorIrvine, Darrell J.en_US
dc.contributor.mitauthorHammond, Paula T.en_US
dc.relation.journalAdvanced Healthcare Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDeMuth, Peter C.; Min, Younjin; Irvine, Darrell J.; Hammond, Paula T.en_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record