Show simple item record

dc.contributor.authorCrespo, Monica P.
dc.contributor.authorAbraham, Wuhbet
dc.contributor.authorChen, Stephanie H.
dc.contributor.authorMueller, Stefanie
dc.contributor.authorMoynihan, Kelly Dare
dc.contributor.authorMelo, Mariane Bandeira
dc.contributor.authorIrvine, Darrell J
dc.contributor.authorSzeto, Gregory
dc.contributor.authorHanson, Melissa Catherine
dc.date.accessioned2015-10-23T18:06:21Z
dc.date.available2015-10-23T18:06:21Z
dc.date.issued2015-05
dc.date.submitted2014-11
dc.identifier.issn0021-9738
dc.identifier.issn1558-8238
dc.identifier.urihttp://hdl.handle.net/1721.1/99440
dc.description.abstractCyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8[superscript +] T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4[superscript +] T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.en_US
dc.description.sponsorshipBill & Melinda Gates Foundationen_US
dc.description.sponsorshipRagon Institute of MGH, MIT and Harvarden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI091693)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI095109)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F32CA180586)en_US
dc.description.sponsorshipHertz Foundation (Graduate Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherAmerican Society for Clinical Investigationen_US
dc.relation.isversionofhttp://dx.doi.org/10.1172/jci79915en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleNanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvantsen_US
dc.typeArticleen_US
dc.identifier.citationHanson, Melissa C., Monica P. Crespo, Wuhbet Abraham, Kelly D. Moynihan, Gregory L. Szeto, Stephanie H. Chen, Mariane B. Melo, Stefanie Mueller, and Darrell J. Irvine. “Nanoparticulate STING Agonists Are Potent Lymph Node–targeted Vaccine Adjuvants.” J. Clin. Invest. 125, no. 6 (May 4, 2015): 2532–2546. © 2015 American Society for Clinical Investigationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentRagon Institute of MGH, MIT and Harvarden_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorHanson, Melissa C.en_US
dc.contributor.mitauthorCrespo, Monica P.en_US
dc.contributor.mitauthorAbraham, Wuhbeten_US
dc.contributor.mitauthorMoynihan, Kelly Dareen_US
dc.contributor.mitauthorSzeto, Gregory Leeen_US
dc.contributor.mitauthorChen, Stephanie H.en_US
dc.contributor.mitauthorMelo, Mariane Bandeiraen_US
dc.contributor.mitauthorMueller, Stefanieen_US
dc.contributor.mitauthorIrvine, Darrell J.en_US
dc.relation.journalJournal of Clinical Investigationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7604-1333
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record