MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Band invariants for perturbations of the harmonic oscillator

Author(s)
Uribe, A.; Wang, Z.; Guillemin, Victor W.
Thumbnail
DownloadGuillemin_Band invariants.pdf (495.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We study the direct and inverse spectral problems for semiclassical operators of the form S = S[subscript 0] + ℏ[superscript 2]V, where S[subscript 0] = 1/2(−ℏ[superscript 2]Δ[subscript Rn] + |x|[superscript 2]) is the harmonic oscillator and V:R[superscript n] → R is a tempered smooth function. We show that the spectrum of S forms eigenvalue clusters as ℏ tends to zero, and compute the first two associated “band invariants”. We derive several inverse spectral results for V, under various assumptions. In particular we prove that, in two dimensions, generic analytic potentials that are even with respect to each variable are spectrally determined (up to a rotation).
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/99441
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Functional Analysis
Publisher
Elsevier
Citation
Guillemin, V., A. Uribe, and Z. Wang. “Band Invariants for Perturbations of the Harmonic Oscillator.” Journal of Functional Analysis 263, no. 5 (September 2012): 1435–1467.
Version: Author's final manuscript
ISSN
00221236
1096-0783

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.