Show simple item record

dc.contributor.authorAckerman, Eyal
dc.contributor.authorFox, Jacob
dc.contributor.authorPinchasi, Rom
dc.date.accessioned2015-10-26T12:08:48Z
dc.date.available2015-10-26T12:08:48Z
dc.date.issued2013-03
dc.date.submitted2013-02
dc.identifier.issn0012365X
dc.identifier.urihttp://hdl.handle.net/1721.1/99447
dc.description.abstractLet G be a geometric graph on n vertices in general position in the plane. We say that G is k-light if no edge e of G has the property that each of the two open half-planes bounded by the line through e contains more than k edges of G. We extend the previous result in Ackerman and Pinchasi (2012) [1] and with a shorter argument show that every k-light geometric graph on n vertices has at most O(n√k) edges. This bound is best possible.en_US
dc.description.sponsorshipSimons Foundation (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1069197)en_US
dc.description.sponsorshipNEC Corporation (MIT Award)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.disc.2013.03.001en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleA note on light geometric graphsen_US
dc.typeArticleen_US
dc.identifier.citationAckerman, Eyal, Jacob Fox, and Rom Pinchasi. “A Note on Light Geometric Graphs.” Discrete Mathematics 313, no. 12 (June 2013): 1281–1283.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFox, Jacoben_US
dc.relation.journalDiscrete Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAckerman, Eyal; Fox, Jacob; Pinchasi, Romen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record