Show simple item record

dc.contributor.authorEl Moselhy, Tarek A.
dc.contributor.authorMarzouk, Youssef M.
dc.date.accessioned2015-10-27T14:08:34Z
dc.date.available2015-10-27T14:08:34Z
dc.date.issued2012-08
dc.date.submitted2012-06
dc.identifier.issn00219991
dc.identifier.issn1090-2716
dc.identifier.urihttp://hdl.handle.net/1721.1/99466
dc.description.abstractWe present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selection through automatic evaluation of the marginal likelihood. We demonstrate the accuracy and efficiency of the approach on nonlinear inverse problems of varying dimension, involving the inference of parameters appearing in ordinary and partial differential equations.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Advanced Scientific Computing Research (Grant DE-SC0002517)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Advanced Scientific Computing Research (Grant DE-SC0003908)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jcp.2012.07.022en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceArxiven_US
dc.titleBayesian inference with optimal mapsen_US
dc.typeArticleen_US
dc.identifier.citationEl Moselhy, Tarek A., and Youssef M. Marzouk. “Bayesian Inference with Optimal Maps.” Journal of Computational Physics 231, no. 23 (October 2012): 7815–7850.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorEl Moselhy, Tarek A.en_US
dc.contributor.mitauthorMarzouk, Youssef M.en_US
dc.relation.journalJournal of Computational Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEl Moselhy, Tarek A.; Marzouk, Youssef M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record