Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes
Author(s)
O’Hern, Sean C.; Idrobo, Juan-Carlos; Song, Yi; Kong, Jing; Laoui, Tahar; Atieh, Muataz; Boutilier, Michael Stephen Hatcher; Karnik, Rohit; ... Show more Show less
Download2014- OHern - Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes.pdf (1.313Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 10[superscript 12] cm[superscript –2], while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.
Date issued
2014-02Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
O’Hern, Sean C., Michael S. H. Boutilier, Juan-Carlos Idrobo, Yi Song, Jing Kong, Tahar Laoui, Muataz Atieh, and Rohit Karnik. “Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes.” Nano Lett. 14, no. 3 (March 12, 2014): 1234–1241.
Version: Author's final manuscript
ISSN
1530-6984
1530-6992