Computer aided manual validation of mass spectrometry-based proteomic data
Author(s)
Curran, Timothy G.; Bryson, Bryan D.; Reigelhaupt, Michael; Johnson, Hannah; White, Forest M.
DownloadWhite_Computer aided.pdf (1.027Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Advances in mass spectrometry-based proteomic technologies have increased the speed of analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy of peptide identifications from these high-throughput analyses have not kept pace with technological advances; currently the most common quality evaluation methods are based on statistical analysis of the likelihood of false positive identifications in large-scale data sets. While helpful, these calculations do not consider the accuracy of each identification, thus creating a precarious situation for biologists relying on the data to inform experimental design. Manual validation is the gold standard approach to confirm accuracy of database identifications, but is extremely time-intensive. To palliate the increasing time required to manually validate large proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to efficiently judge the quality of each identification and summarize applicable quantitative information. CAMV significantly reduces the burden associated with manual validation and will hopefully encourage broader adoption of manual validation in mass spectrometry-based proteomics.
Date issued
2013-03Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Mathematics; Koch Institute for Integrative Cancer Research at MITJournal
Methods
Publisher
Elsevier
Citation
Curran, Timothy G., Bryan D. Bryson, Michael Reigelhaupt, Hannah Johnson, and Forest M. White. “Computer Aided Manual Validation of Mass Spectrometry-Based Proteomic Data.” Methods 61, no. 3 (June 2013): 219–226.
Version: Author's final manuscript
ISSN
10462023
1095-9130